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Undeniable Signature (1)

Properties:

Public key algorithm
Binding some information or a document with an entity
Verifiable only with the cooperation of the signer
Non repudiation property still holds!
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Undeniable Signature (2)
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Related Work

Undeniable Signatures, Chaum and van Antwerpen, Crypto’89.
Zero-knowledge Undeniable Signatures, Chaum, Eurocrypt ’90.
New Convertible Undeniable Signatures, Dåmgard and
Pedersen, Eurocrypt ’96.
RSA-Based Undeniable Signatures, Gennaro, Rabin and
Krawczyk, Crypto ’97.
Identity Based Undeniable Signatures, Libert and Quisquater,
CT-RSA ’04.
Undeniable Signatures Based on Characters, Monnerat and
Vaudenay, PKC ’04. (MOVA Scheme)
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Interpolation of Group
Homomorphisms
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Interpolation Problems

GHI Problem (Group Homomorphism Interpolation Problem)

Parameters: two Abelian groups G and H, a set of s points S ⊆ G×H.

Input: x ∈ G.

Problem: find y ∈ H such that S ∪ {(x, y)} interpolates in a group
homomorphism i.e., for S = {(x1, y1), . . . , (xs, ys)} there
exists a group homomorphism Hom such that Hom(xi) = yi,
i = 1, . . . , s and Hom(x) = y.

GHID Problem (Group Homomorphism Interpolation Decisional Problem)

Parameters: two Abelian groups G and H, a set of s points S ⊆ G×H.

Input: (x, y) ∈ G×H.

Problem: does S ∪ {(x, y)} interpolate in a group homomorphism?
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Geometrical Interpretation

Homomorphism
Set of points S
GHI Input

x2 xs

y

x
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x1
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Relation to Well-known Problems

DLP. G :=< g > cyclic group of order q, H := Zq . S = {(g, 1)}
interpolates in a unique homomorphism, namely the discrete
logarithm w.r.t. g.
RSA. Let n = pq be a RSA modulus, e ∈ Z∗ϕ(n) the encryption
exponent and G = H = Z∗n. Let S := {(xei mod n, xi)i=1,...,s}
such that the first coordinates generate Z∗n. The RSA decryption
problem corresponds to the GHIP.
Other examples such as, the quadratic residuosity problem,
Diffie-Hellman problem, bilinear Diffie-Hellman problem, MOVA
problem, . . .
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Proof of Interpolation

Let d := #H .

GHIproof ({(xj , yj); j = 1, . . . , J}) with parameter I

Prover Verifier

pick ri ∈ G, ai,j ∈ Zd
ui = dri +

∑
j ai,jxj

u←−−−−−−−−−−−−−− wi =
∑

j ai,jyj

vi = Hom(ui)
commit(v)−−−−−−−−−−−−−−→

check u r,a←−−−−−−−−−−−−−−
open(v)−−−−−−−−−−−−−−→ check commitment, v = w
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Security of GHIproof

The GHIproofI(S) protocol satisfies the following properties:

Completeness. The protocol always succeeds when the prover
and the verifier follow the protocol.

Zero-knowledge The protocol is perfectly black-box
zero-knowledge.

Proof of membership. If the protocol succeeds, then S
interpolates in a group homomorphism.

Proof of knowledge. If the protocol succeeds, there exists an
extractor which computes an interpolating homomorphism.
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Proof of Non-Interpolation

Let p be the smallest prime factor of d = #H.

coGHIproof
`
{(xj , yj); j = 1, . . . , J}, {(x′k, zk); k = 1, . . . ,K}

´
with parameter I

Prover Verifier

pick ri,k ∈ G, ai,j,k ∈ Zd, λi ∈ Zp
ui,k = dri,k +

P
j ai,j,kxj + λix

′
k

wi,k =
P
j ai,j,kyj + λizk

compute vi,k = Hom(ui,k)
u,w←−−−−−−−−

deduce λi from

wi,k − vi,k = λi(zk − Hom(x′k))
commit(λ)−−−−−−−−→

check u, w
r,a←−−−−−−−−

open(λ)−−−−−−−−→ check commitment, λ
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Uniqueness of the Homomorphism

Theorem
Let G, H be two finite Abelian groups. We denote d the order of H .
Let x1, . . . , xs ∈ G which span G′. The following properties are
equivalent. In this case, we say that x1, . . . , xs H-generate G.

1 For all y1, . . . , ys ∈ H , there exists at most one group
homomorphism Hom : G −→ H such that Hom(xi) = yi for all
i = 1, . . . s.

2 G′ + dG = G.
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Our Signature Scheme
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Using Group Homomorphisms in Cryptography

DL-based cryptography y = gx

secret input
fixed homomorphism−−−−−−−−−−−−−−−−−−−−−−−−→ public key

Our approach y = Hom(x)

fixed input
secret homomorphism−−−−−−−−−−−−−−−−−−−−−−−−→ public key
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Basic Description

Setup
Select two groups Xgroup and Ygroup (Ygroup small)
Select a secret group homomorphism Hom : Xgroup −→ Ygroup
Select some base points to characterize Hom

Signature
Generate some xi’s from the message
Compute the group homomorphism on the xi’s

Verification: prove/disprove the interpolation

J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures
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Geometrical Interpretation

Homomorphism
Base points
Signature points

y2

x2x1

y1
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Setups without Validation

Setup Variant 1. The signer selects Abelian groups Xgroup,
Ygroup and an homomorphism Hom. He computes the order d of
Ygroup. He then picks a random string SeedK and computes the
Lkey first values Xkeyj from Gen1(SeedK) and
Ykeyj = Hom(Xkeyj), j = 1, . . . , Lkey.
Setup Variant 2. (signer with a Registration Authority) The role of
RA consists of making sure that a key was randomly selected.
This works similarly as the variant 1 except that RA picks SeedK
at random after the signer have sent his identity Id. The RA
sends SeedK with a signature C for

(Id,Xgroup,Ygroup, d, SeedK).
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Signature Generation

Let M be a message to be signed.

Compute Gen2(M)→ (Xsig1, . . . ,XsigLsig)

Compute Ysig1 = Hom(Xsig1), . . . ,YsigLsig = Hom(XsigLsig)

The signature is [Ysig1, . . . ,YsigLsig]

J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures
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Confirmation Protocol

Let M be the message and [Ysig1, . . . ,YsigLsig] be the signature

Kp = (Xgroup,Ygroup, d, param, SeedK, (Ykey1, . . . ,YkeyLkey), opt)

Compute Gen1(SeedK)→ (Xkey1, . . . ,XkeyLkey)

Compute Gen2(M)→ (Xsig1, . . . ,XsigLsig)

Set

S = {(Xkeyj ,Ykeyj); j = 1, . . . , Lkey}∪{(Xsigk,Ysigk); k = 1, . . . , Lsig}

Run GHIproof(S) with parameter Icon.
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Denial Protocol

Let M be the message and [Zsig1, . . . ,ZsigLsig] be the alleged
non-signature

Kp = (Xgroup,Ygroup, d, param, SeedK, (Ykey1, . . . ,YkeyLkey), opt)

Compute Gen1(SeedK)→ (Xkey1, . . . ,XkeyLkey)

Compute Gen2(M)→ (Xsig1, . . . ,XsigLsig)

Set

S = {(Xkeyj ,Ykeyj); j = 1, . . . , Lkey}
T = {(Xsigk,Zsigk); k = 1, . . . , Lsig}

Run coGHIproof(S, T ) with parameter Iden

J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures
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MGGD Problem and Key Validity

MGGD Problem (Modular Group Generation Decisional Problem)
Parameters: an Abelian group G, an integer d.

Input: a set of values S1 = {x1, . . . , xs} ⊆ G.
Problem: Is < S1 > +dG = G?

We say that the public key is valid if the answer of the MGGD
Problem is positive with G = Xgroup and
S1 = {Xkey1, . . . ,XkeyLkey}, i.e, S1 Ygroup-generate Xgroup.
Otherwise, the signer might be able to repudiate his signature.
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Representation Problem

Expert group knowledge = ability to solve MSR and Root problems in
Xgroup.

MSR Problem (Modular System Representation
Problem)
Parameters: an Abelian group G, a set
S1 = {x1, . . . , xs} ⊆ G, an integer d.
Input: x ∈ G.
Problem: find a1, . . . , as ∈ Z such that
x ∈ a1x1 + · · ·+ asxs + dG.

Root Problem (dth Root Problem)
Parameters: an Abelian group G, an integer d.
Input: x ∈ G.
Problem: find r ∈ G such that x = dr.

J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures
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Group Homomorphism Uniqueness Proof

MGGDproof ({xj ; j = 1, . . . , J}) with parameter I

Prover Verifier

pick αi ∈ Xgroup
commit(α)−−−−−−−−−→

β←−−−−−−−−− pick βi ∈ Xgroup
solve αi + βi = dri +

∑
j ai,jxj

open(α),r,a−−−−−−−−−→ check commitment, r, a

→ all Xgroup elements can be written dri +
∑

j ai,jxj ...
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Setups with Validation

Setup Variant 3 (signer with an expert group knowledge)
Like the Setup Variant 1, but the signer also runs
MGGDproof({Xkey1, . . . ,XkeyLkey}) with parameter Ival
to validate the key.

Setup Variant 4 (signer with an expert group knowledge,
non-interactive)
Like Setup Variant 3 except that MGGDproof is
transformed into a non-interactive proof.

Public Key Content
Kp = (Xgroup,Ygroup, d, param, SeedK, (Ykey1, . . . ,YkeyLkey), opt)

Variant 1: opt = ∅
Variant 2: opt = Id, C
Variant 3: opt = Ival
Variant 4: opt = Ival, niMGGDproof
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Security Results

Theorem
Assuming that the public key is valid, we have the following security
results.

i Let S = {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)}. The scheme
resists existential forgery attacks provided that Gen2 is a
random oracle and the S-GHI problem is intractable.

ii The confirmation (resp. denial) protocol is sound.
iii The confirmation protocol is private when the commitment

scheme is extractable.
iv The signatures are invisible.
v The confirmation (resp. denial) protocol is perfectly black-box

zero-knowledge when the commitment scheme is perfectly
hiding.
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Setup Example

Let n = p× q such that p = rd + 1 and q are prime, gcd(r, d) = 1,
gcd(q − 1, d) = 1. We take G = Z∗n and H = Zd. We can easily
compute a group homomorphism by first raising to the power r(q − 1)
then computing a discrete logarithm.

Using a precomputed table (memory O(d), O(1) complexity)
Time-memory tradeoffs (memory O(M), O(d/M) complexity)
Using the Pollard algorithm (no memory, O(

√
d) complexity)
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Complexity

We take G = Z∗n with a standard RSA-modulus n = pq and
compare the setup example with MOVA adapted to our scheme
(d = 2).
We consider an online security of 220 and offline security of 280.

Setup d Lkey Lsig, Icon, Iden Ival Signature cost Confirmation cost
1 2 80 20 20 Leg. symb. 20 Leg. symb., 730 mult.
2 2 20 20 20 Leg. symb. 20 Leg. symb., 280 mult.
3 2 2 20 20 20 Leg. symb. 20 Leg. symb., 145 mult.
4 2 2 20 80 20 Leg. symb. 20 Leg. symb., 145 mult.
1 220 + 7 4 1 1 Hom 1 Hom, 65 mult.
2 220 + 7 1 1 1 Hom 1 Hom, 35 mult.
3 220 + 7 1 1 1 1 Hom 1 Hom, 35 mult.
4 220 + 7 1 1 4 1 Hom 1 Hom, 35 mult.

Leg. symb. ≈ modular inversion Hom ≈ exponentiation in Z∗p
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Other properties

We can have some 2-move variants for the confirmation and
denial protocol.
With expert group knowledge we can achieve selective
convertibility.
We can easily confirm a bunch of signatures and achieves batch
verification.
The non-transferability of the proofs is achieved using trapdoor
commitment.
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Conclusion

We introduced the GHI and GHID problems
We proposed efficient ZK proofs for GHID and co-GHID
We devised a (generic) undeniable signature scheme
Our scheme can achieve (very) short signatures and low
computational costs
Other nice properties: batch verification, selective convertibility,
etc.
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