Generic Homomorphic Undeniable Signatures

J. Monnerat S. Vaudenay

Asiacrypt '04 - December 8, 2004

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures

Introduction

Interpolation of Group Homomorphisms Our Signature Scheme Conclusion

Introduction

イロト イポト イヨト イヨト

큰

Undeniable Signature (1)

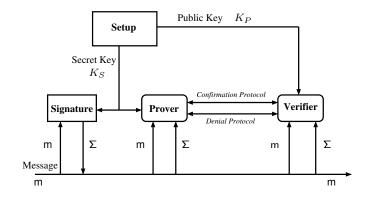
Properties:

- Public key algorithm
- Binding some information or a document with an entity
- Verifiable only with the cooperation of the signer
- Non repudiation property still holds!

Introduction

Interpolation of Group Homomorphisms Our Signature Scheme Conclusion

Undeniable Signature (2)



イロト イポト イヨト イヨト

큰

Related Work

- Undeniable Signatures, Chaum and van Antwerpen, Crypto'89.
- Zero-knowledge Undeniable Signatures, Chaum, Eurocrypt '90.
- New Convertible Undeniable Signatures, Dåmgard and Pedersen, Eurocrypt '96.
- *RSA-Based Undeniable Signatures*, Gennaro, Rabin and Krawczyk, Crypto '97.
- *Identity Based Undeniable Signatures*, Libert and Quisquater, CT-RSA '04.
- Undeniable Signatures Based on Characters, Monnerat and Vaudenay, PKC '04. (MOVA Scheme)

Interpolation of Group Homomorphisms

Interpolation Problems

GHI Problem (Group Homomorphism Interpolation Problem)

```
Parameters: two Abelian groups G and H, a set of s points S \subseteq G \times H.
```

```
Input: x \in G.
```

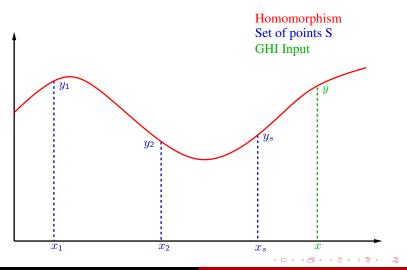
Problem: find $y \in H$ such that $S \cup \{(x, y)\}$ interpolates in a group homomorphism i.e., for $S = \{(x_1, y_1), \dots, (x_s, y_s)\}$ there exists a group homomorphism Hom such that $\text{Hom}(x_i) = y_i$, $i = 1, \dots, s$ and Hom(x) = y.

GHID Problem (Group Homomorphism Interpolation Decisional Problem) Parameters: two Abelian groups G and H, a set of s points $S \subseteq G \times H$. Input: $(x, y) \in G \times H$.

Problem: does $S \cup \{(x, y)\}$ interpolate in a group homomorphism?

< ロト < 同ト < ヨト < ヨト :

Geometrical Interpretation



J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures

Relation to Well-known Problems

- **DLP.** $G := \langle g \rangle$ cyclic group of order $q, H := \mathbb{Z}_q$. $S = \{(g, 1)\}$ interpolates in a unique homomorphism, namely the discrete logarithm w.r.t. g.
- **RSA.** Let n = pq be a RSA modulus, $e \in \mathbf{Z}_{\varphi(n)}^*$ the encryption exponent and $G = H = \mathbf{Z}_n^*$. Let $S := \{(x_i^e \mod n, x_i)_{i=1,...,s}\}$ such that the first coordinates generate \mathbf{Z}_n^* . The RSA decryption problem corresponds to the GHIP.
- Other examples such as, the quadratic residuosity problem, Diffie-Hellman problem, bilinear Diffie-Hellman problem, MOVA problem, ...

Proof of Interpolation

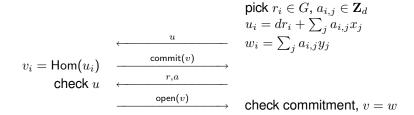
Let d := #H.

GHIproof ({ $(x_j, y_j); j = 1, ..., J$ }) with parameter I

Prover

Verifier

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Security of GHIproof

The GHIproof $_{I}(S)$ protocol satisfies the following properties:

- Completeness. The protocol always succeeds when the prover and the verifier follow the protocol.
- Zero-knowledge The protocol is perfectly black-box zero-knowledge.
- **Proof of membership.** If the protocol succeeds, then *S* interpolates in a group homomorphism.
- **Proof of knowledge.** If the protocol succeeds, there exists an extractor which computes an interpolating homomorphism.

4 D K 4 B K 4 B K 4

Proof of Non-Interpolation

Let p be the smallest prime factor of d = #H.

coGHIproof $(\{(x_j, y_j); j = 1, ..., J\}, \{(x'_k, z_k); k = 1, ..., K\})$ with parameter I

Prover

Verifier

< ロ > < 同 > < 三 > < 三 > 、

$$\begin{array}{c} \text{pick } r_{i,k} \in G, a_{i,j,k} \in \mathbf{Z}_d, \lambda_i \in \mathbf{Z}_p \\ u_{i,k} = dr_{i,k} + \sum_j a_{i,j,k} x_j + \lambda_i x'_k \\ u_{i,k} = dr_{i,k} + \sum_j a_{i,j,k} y_j + \lambda_i z_k \\ w_{i,k} = \sum_j a_{i,j,k} y_j + \lambda_i z_k \\$$

Uniqueness of the Homomorphism

Theorem

Let G, H be two finite Abelian groups. We denote d the order of H. Let $x_1, \ldots, x_s \in G$ which span G'. The following properties are equivalent. In this case, we say that x_1, \ldots, x_s H-generate G.

For all y₁,..., y_s ∈ H, there exists at most one group homomorphism Hom : G → H such that Hom(x_i) = y_i for all i = 1,...s.

Our Signature Scheme

J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using Group Homomorphisms in Cryptography

DL-based cryptography $y = g^x$

secret input ______fixed homomorphism ______ public key

Our approach y = Hom(x)

fixed input ______ public key

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Basic Description

- Setup
 - Select two groups Xgroup and Ygroup (Ygroup small)
 - Select a secret group homomorphism $\mathsf{Hom}:\mathsf{Xgroup}\longrightarrow\mathsf{Ygroup}$
 - Select some base points to characterize Hom
- Signature
 - Generate some x_i's from the message
 - Compute the group homomorphism on the x_i's
- Verification: prove/disprove the interpolation

Geometrical Interpretation



J. Monnerat, S. Vaudenay Generic Homomorphic Undeniable Signatures

Setups without Validation

- Setup Variant 1. The signer selects Abelian groups Xgroup, Ygroup and an homomorphism Hom. He computes the order d of Ygroup. He then picks a random string SeedK and computes the Lkey first values Xkey_j from Gen₁(SeedK) and Ykey_j = Hom(Xkey_j), j = 1, ..., Lkey.
- Setup Variant 2. (signer with a Registration Authority) The role of RA consists of making sure that a key was randomly selected. This works similarly as the variant 1 except that RA picks SeedK at random after the signer have sent his identity Id. The RA sends SeedK with a signature *C* for

(Id, Xgroup, Ygroup, d, SeedK).

Signature Generation

Let M be a message to be signed.

- Compute $\operatorname{Gen}_2(M) \to (\operatorname{Xsig}_1, \ldots, \operatorname{Xsig}_{\operatorname{Lsig}})$
- Compute $Ysig_1 = Hom(Xsig_1), \dots, Ysig_{Lsig} = Hom(Xsig_{Lsig})$
- The signature is $[Ysig_1, \dots, Ysig_{Lsig}]$

Confirmation Protocol

Let M be the message and $[\mathsf{Ysig}_1,\ldots,\mathsf{Ysig}_{\mathsf{Lsig}}]$ be the signature

 $K_p = (\mathsf{Xgroup}, \mathsf{Ygroup}, d, \mathsf{param}, \mathsf{SeedK}, (\mathsf{Ykey}_1, \dots, \mathsf{Ykey}_{\mathsf{Lkey}}), \mathsf{opt})$

- Compute $Gen_1(SeedK) \rightarrow (Xkey_1, \dots, Xkey_{Lkey})$
- Compute $Gen_2(M) \rightarrow (Xsig_1, \dots, Xsig_{Lsig})$

Set

 $S = \{(\mathsf{Xkey}_j,\mathsf{Ykey}_j); j = 1, \dots, \mathsf{Lkey}\} \cup \{(\mathsf{Xsig}_k,\mathsf{Ysig}_k); k = 1, \dots, \mathsf{Lsig}\}$

• Run GHIproof(S) with parameter lcon.

イロト イポト イヨト イヨト 二三

Denial Protocol

Let M be the message and $[\mathsf{Zsig}_1,\ldots,\mathsf{Zsig}_{\mathsf{Lsig}}]$ be the alleged non-signature

 $K_p = (\mathsf{Xgroup}, \mathsf{Ygroup}, d, \mathsf{param}, \mathsf{SeedK}, (\mathsf{Ykey}_1, \dots, \mathsf{Ykey}_{\mathsf{Lkey}}), \mathsf{opt})$

- Compute $Gen_1(SeedK) \rightarrow (Xkey_1, \dots, Xkey_{Lkey})$
- Compute $Gen_2(M) \rightarrow (Xsig_1, \dots, Xsig_{Lsig})$

Set

$$S = \{(\mathsf{Xkey}_j, \mathsf{Ykey}_j); j = 1, \dots, \mathsf{Lkey}\}$$
$$T = \{(\mathsf{Xsig}_k, \mathsf{Zsig}_k); k = 1, \dots, \mathsf{Lsig}\}$$

• Run coGHIproof(S,T) with parameter Iden

MGGD Problem and Key Validity

MGGD Problem (Modular Group Generation Decisional Problem) Parameters: an Abelian group G, an integer d.

Input: a set of values $S_1 = \{x_1, \dots, x_s\} \subseteq G$. Problem: Is $\langle S_1 \rangle + dG = G$?

- We say that the public key is valid if the answer of the MGGD Problem is positive with G = Xgroup and $S_1 = \{Xkey_1, \dots, Xkey_{Lkey}\}, i.e, S_1$ Ygroup-generate Xgroup.
- Otherwise, the signer might be able to repudiate his signature.

Representation Problem

Expert group knowledge = ability to solve MSR and Root problems in Xgroup.

> MSR Problem (Modular System Representation Problem)

Parameters: an Abelian group G, a set

 $S_1 = \{x_1, \ldots, x_s\} \subseteq G$, an integer d.

Input: $x \in G$.

Problem: find $a_1, \ldots, a_s \in \mathbb{Z}$ such that $x \in a_1 x_1 + \cdots + a_s x_s + dG$.

Root Problem (*dth* Root Problem) **Parameters:** an Abelian group G, an integer d. Input: $x \in G$. **Problem:** find $r \in G$ such that x = dr.

Group Homomorphism Uniqueness Proof

MGGDproof ($\{x_j; j = 1, ..., J\}$) with parameter I

Prover

Verifier

$$\begin{array}{ccc} \operatorname{pick} \alpha_i \in \operatorname{Xgroup} & \xrightarrow{\operatorname{commit}(\alpha)} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

 \rightarrow all Xgroup elements can be written $dr_i + \sum_j a_{i,j} x_j \dots$

Setups with Validation

Setup Variant 3 (signer with an expert group knowledge) Like the Setup Variant 1, but the signer also runs MGGDproof({Xkey₁,...,Xkey_{Lkey}}) with parameter Ival to validate the key.

Setup Variant 4 (signer with an expert group knowledge, non-interactive)

Like Setup Variant 3 except that MGGDproof is transformed into a non-interactive proof.

Public Key Content

 $K_p = (\mathsf{Xgroup}, \mathsf{Ygroup}, d, \mathsf{param}, \mathsf{SeedK}, (\mathsf{Ykey}_1, \dots, \mathsf{Ykey}_{\mathsf{Lkey}}), \mathsf{opt})$

- Variant 1: $opt = \emptyset$
- Variant 2: opt = Id, C
- Variant 3: opt = Ival
- Variant 4: opt = Ival, niMGGDproof

> < 圖> < 圖> < 圖>

Security Results

Theorem

Assuming that the public key is valid, we have the following security results.

- Let S = {(Xkey₁, Ykey₁), ..., (Xkey_{Lkey}, Ykey_{Lkey})}. The scheme resists existential forgery attacks provided that Gen₂ is a random oracle and the S-GHI problem is intractable.
 - The confirmation (resp. denial) protocol is **sound**.
- The confirmation protocol is private when the commitment scheme is extractable.
- The signatures are invisible.
- The confirmation (resp. denial) protocol is perfectly black-box zero-knowledge when the commitment scheme is perfectly hiding.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setup Example

Let $n = p \times q$ such that p = rd + 1 and q are prime, gcd(r, d) = 1, gcd(q - 1, d) = 1. We take $G = \mathbf{Z}_n^*$ and $H = \mathbf{Z}_d$. We can easily compute a group homomorphism by first raising to the power r(q - 1)then computing a discrete logarithm.

- Using a precomputed table (memory $\mathcal{O}(d)$, $\mathcal{O}(1)$ complexity)
- Time-memory tradeoffs (memory $\mathcal{O}(M)$, $\mathcal{O}(d/M)$ complexity)
- Using the Pollard algorithm (no memory, $\mathcal{O}(\sqrt{d})$ complexity)

イロト イポト イヨト イヨト

Complexity

- We take $G = \mathbf{Z}_n^*$ with a standard RSA-modulus n = pq and compare the setup example with MOVA adapted to our scheme (d = 2).
- We consider an online security of 2^{20} and offline security of 2^{80} .

Setup	d	Lkey	Lsig, Icon, Iden	Ival	Signature cost	Confirmation cost
1	2	80	20		20 Leg. symb.	20 Leg. symb., 730 mult.
2	2	20	20		20 Leg. symb.	20 Leg. symb., 280 mult.
3	2	2	20	20	20 Leg. symb.	20 Leg. symb., 145 mult.
4	2	2	20	80	20 Leg. symb.	20 Leg. symb., 145 mult.
1	$2^{20} + 7$	4	1		1 Hom	1 Hom, 65 mult.
2	$2^{20} + 7$	1	1		1 Hom	1 Hom, 35 mult.
3	$2^{20} + 7$	1	1	1	1 Hom	1 Hom, <mark>35 mult</mark> .
4	$2^{20} + 7$	1	1	4	1 Hom	1 Hom, 35 mult.

Leg. symb. \approx modular inversion

Hom \approx exponentiation in \mathbf{Z}_p^*

Other properties

- We can have some 2-move variants for the confirmation and denial protocol.
- With expert group knowledge we can achieve selective convertibility.
- We can easily confirm a bunch of signatures and achieves batch verification.
- The non-transferability of the proofs is achieved using trapdoor commitment.

Conclusion

- We introduced the GHI and GHID problems
- We proposed efficient ZK proofs for GHID and co-GHID
- We devised a (generic) undeniable signature scheme
- Our scheme can achieve (very) short signatures and low computational costs
- Other nice properties: batch verification, selective convertibility, etc.